
NetState : A Network Version Tracking System∗

Nancy Durgin Yuqing Mai Jamie Van Randwyk

Sandia National Laboratories
Livermore, CA 94550

nadurgi@sandia.gov yuqingm@hotmail.com jvanran@sandia.gov

Abstract

Network administrators and security analysts often do
not know what network services are being run in ev-
ery corner of their networks. If they do have a vague
grasp of the services running on their networks, they of-
ten do not know what specific versions of those services
are running. Actively scanning for services and versions
does not always yield complete results, and patch and
service management, therefore, suffer. We present Net-
State, a system for monitoring, storing, and reporting ap-
plication and operating system version information for a
network. NetState gives security and network adminis-
trators the ability to know what is running on their net-
works while allowing for user-managed machines and
complex host configurations. Our architecture uses dis-
tributed modules to collect network information and a
centralized server that stores and issues reports on that
collected version information. We discuss some of the
challenges to building and operating NetState as well as
the legal issues surrounding the promiscuous capture of
network data. We conclude that this tool can solve some
key problems in network management and has a wide
range of possibilities for future uses.

1 Introduction

As computer networks grow larger, it becomes more dif-
ficult to manage those networks. It is increasingly diffi-
cult for information technology (IT) departments to man-
age large numbers of computers and similar devices on
their networks. As users become more savvy, it is more
difficult to control the network services that users run on
their computing devices. In addition, viruses, Trojan-
horses and worms may install “back-door” network ser-

∗Sandia is a multiprogram laboratory operated by Sandia Corpora-
tion, a Lockheed Martin Company, for the United States Department
of Energy’s National Nuclear Security Administration under Contract
DE-AC04-94AL85000.

vices. Firewall and corporate policies are only able to
control the spread of network services to a limited de-
gree.

Because IT departments cannot always control which
network services are being run on their networks, they
must find a way to identify which services are being run
on which devices. In the past, port scanning (using a tool
such as Fyodor’sNmap [1]) was a reasonably airtight
technique used to identify services running on a given
network-enabled device. Now users install common net-
work services on non-standard ports to get around cor-
porate firewall restrictions. Some users install multiple
operating systems on a single computer, rendering port
scans incomplete. Trojan-horses use proprietary network
protocols on seemingly random ports to conduct their ne-
farious activity.

Not knowing what services are running on one’s net-
work makes patch management and service management
extremely difficult. This can open network devices up
to compromise because the IT staff cannot identify and
patch all instances of the affected service after a new vul-
nerability announcement.

We built NetState to passively monitor, store, and re-
port application and operating system version informa-
tion for a network. NetState includes sniffer modules
that monitor traffic across a network, a backend database
for storing service name and version information, and a
GUI client for querying the database. NetState was built
for internal use but is now being made available in the
public domain.

We have organized the rest of this paper as follows:
In Section 2 we survey existing open source and com-
mercial tools that attempt to catalog service versions in
existence on a network. Then, in Section 3 we discuss
both our design requirements and our implementation.
Our discussion of the implementation describes the three
main components of NetState: the NetState Sniffer, the
NetState Server, and the data query interfaces. In Sec-
tions 4, 5, and 6 we describe the performance of NetState

in a low-bandwidth network and relate our experiences
and perceived challenges in using NetState on a day-to-
day basis. Next, in Section 7, we give an overview of
legal issues surrounding the “sniffing” of data in both
the employer-employee and Internet service provider-
customer scenarios. We conclude by discussing future
work in Section 8.

2 Related Work

When we surveyed the commercial and open source
communities for software to perform our desired func-
tions we did not find anything that fit our requirements.

Several companies sell products that monitor and
record network traffic for further analysis [2, 3]. Presum-
ably, these products offer the ability to report network
service versions, but we did not test for this. Company
literature was also not clear in identifying the existence
of this feature. We did not fully evaluate these products
because their overall utility was far more than we needed.

Novell sells the desktop management productZEN-
works that allows centralized management of many in-
dependent systems via amanagement agent running on
those machines [4]. From a central location a network
or security administrator can enforce a standard desktop
environment, migrate personal settings, deploy software
patches, and monitor system performance. The central
management server provides a network analyst with in-
depth information about each of the managed hosts. This
includes information about network service versions. We
would not be able to rely on such software to accu-
rately represent our entire network though. Our labora-
tory research environment demands that some systems
be managed solely by the researcher that owns them,
often meaning that remote management utilities cannot
be installed by our desktop support team. More impor-
tantly, ZENworks only supports the NetWare, Windows,
and Linux operating systems. Our networks are home to
systems running many operating systems beyond those
supported by ZENworks, also including Linux distribu-
tions not officially supported. Finally, the capabilities
of ZENworks are far beyond what we wanted to imple-
ment; the Novell software would duplicate functionality
already established by competing products on our net-
works.

Nmap recently introduced a network service version
scanning feature. Using the ‘-sV’ or ‘-A’ options, an an-
alyst can identify the application name and version in-
formation when available. Nmap performs this inquiry
for each open port that it discovers during the port scan-
ning procedure. The community involvement with keep-
ing the service version database up-to-date is especially
valuable to Nmap. Nmap is designed to be an active
scanning tool though. It cannot detect when a multi-boot

system has been booted into a different operating system
or when a machine that is often powered off has been
powered on. In these situations, Nmap could fail to iden-
tify open and potentially vulnerable network services.

We have decided to release the NetState source code to
the open source community for several reasons. Primar-
ily, we believe that secure public networks are of benefit
to everybody. A tool that allows network administrators
to be more aware of the behavior of the machines on their
networks is one more step towards this goal. In addi-
tion, while we have implemented version detection for
many common protocols, we feel the open source com-
munity can contribute support for additional protocols or
improve upon the current detection methods.

3 Architecture

Our design was formed after discussing goals with our
security analysts, studying our existing security architec-
ture and evaluating a prototype tool that we had writ-
ten. We first discuss some of our design requirements
and then describe how we met those in our implementa-
tion.

3.1 Design Requirements

• Fits into our existing network security frame-
work: The server computer should exist on a
private security network. Only security personnel,
other authorized personnel, and machines owned by
security should be able to access this machine via
the network. The network traffic being monitored
should be on a separate network.

• Comprehensive data collection: Traffic should
be monitored at every network ingress and egress
point. This includes wide-area Internet links, VPN
concentrators, modem pools, wireless access points,
point-to-point links with collaborators, etc.

• Pertinent information only: All information
about network application versions should be col-
lected for all computers, but we should not store
any more than that. We should be able to determine
which application version is/was running on which
port on each device at any point in time.

• Major network applications: We should track in-
formation for “major” applications on our network.
This includes services and client applications that
are commonly used or are mission-critical. We im-
plement this in such a way as to allow expansion to
additional applications in the future.

• Passive monitoring: All version information
should be collected passively by monitoring all the
traffic on the target network.

3.2 Passive vs. Active Scanning

A major distinction of NetState’s design is that it uses
passive scanning techniques as opposed to the active
techniques employed by tools such asNmap andNessus
[5]. While active scanning techniques can often yield
more detailed or precise data, for example by sending
specially crafted packets that yield a definitive signature,
passive scanning offers several advantages:

• Active scanning tools are “noisy”, creating addi-
tional, and often unnecessary, traffic on a network.

• If a particular machine is turned off, a single ma-
chine boots multiple operating systems, or multiple
machines share the same IP addresses at different
times (via DHCP), it is difficult to guarantee detect-
ing these situations via active scans. Since passive
scanning monitors network traffic atall times, it
yields information about what actually happens on
the network, rather than just a snapshot of what the
network looked like when the scan was performed.

These active scanning tools can still be used to as-
sist NetState in gathering application version informa-
tion. We can populate the NetState database by perform-
ing an active scan that receives its results under the nose
of a NetState Sniffer.

3.3 Implementation

Our design goals led us to implement a distributed sys-
tem consisting of several modular programs all working
together as NetState. The architecture is shown in Fig-
ure 1.

The core of our system is a server process that accepts
network traffic information from distributed Sniffer pro-
cesses and places the information into a database. The
NetState Server receives connections from NetState Snif-
fers via a private “security” network. The Server receives
application version information over those connections
and stores the information in a database. These connec-
tions could be established over the open network as well,
but NetState needs built-in authentication before that is
practical. The Server also responds to queries from au-
thorized clients that are allowed to access the application
version database. Access control is maintained using op-
erating system-level firewall rules.

Figure 1:The NetState architecture includes distributedSnif-
fers that capture Ethernet frames and parse them for version
information. The Sniffers send this information on to the Net-
StateServer which inserts the data into a database. The Net-
State Web GUI (graphical user interface) and the database CLI
(command-line interface) can be used to query the database and
retrieve version information.

3.4 NetState Sniffers

The NetState Sniffers are designed to be deployed in
many locations on a network. The Sniffers capture net-
work traffic using libpcap [6], the packet capture library
available for most UNIX and UNIX-like operating sys-
tems. The Sniffers listen passively on a network interface
that is given access to all traffic on the to-be-monitored
network link, whether by a switch’s port-mirroring func-
tion, a network tap or some other method.

Operating system detection is performed using the
open source programp0f (version 2) [7] [Figure 2]. (The
data used for our Web GUI figures were PCAP files col-
lected by MIT Lincoln Labs as part of the DARPA In-
trusion Detection Evaluation project [8]. We replayed
the traffic on a private network using Tcpreplay [9].) We
modified p0f to tightly integrate it into NetState, calling
it directly as a subroutine. OS detection is performed at
the beginning of each new connection, on the synchro-
nize (SYN) packet.

Application version detection is performed by looking
at the first few data packets of a connection [Figures 3,
4]. The first data packet is examined for “magic strings”
which indicate it likely contains traffic of a specific type.
For example the magic string for the FTP and NNTP pro-
tocols is the number “202” at the beginning of a line,
while the magic string for an HTTP server is “HTTP” at
the beginning of a line. If a magic string is found, then
further processing is done to find a version string in that
packet or from one of the next few packets, depending

Figure 2: These query results, using the NetState Web GUI,
show a partial listing of the operating system versions detected
on the 172.*.*.* network. The dates indicate when the oper-
ating system was first detected and when it was most recently
detected.

on the specific protocol.
In most cases the version string that is stored in the

database for applications is simply the entire string in
which the version appears. No attempt is made to pull
a numeric value out of a string, because in most cases
the format of the version string is not well-defined, but
instead, tends to follow common conventions.

In a few cases, e.g. for the file transfer protocol (FTP)
and the simple mail transport protocol (SMTP), some im-
plementations append a time/date stamp to the version.
Since the timestamp would cause each version string for
sessions occurring at different times with the same server
to be logged as a new version, this information is stripped
off. These sorts of issues need to be discovered and han-
dled on a case-by-case basis.

Currently NetState does not use the port number to in-
fer that a particular application is running. It will find
hypertext transfer protocol (HTTP) traffic on any port,
FTP on any port, etc. By not using the port number as
a “hint”, we are more restricted in what applications we
can currently detect, but since we want to be able to de-
tect rogue applications on unusual ports, this seemed like
the correct design decision.

The NetState Sniffer keeps a cache of recently seen
version numbers by IP address and port. If a version
string is detected that was seen recently, the timestamp
is updated internally in the Sniffer but not updated to the
Server component right away. A timeout can be con-
figured to control how often the cache updates. This
caching feature was added to improve database perfor-
mance on busy networks by reducing the number of

Figure 3:These query results show the detected network ser-
vices and their corresponding versions and port numbers on the
local network. The “start date” and “recent date” columns in-
dicate when the particular service was first detected and most
recently detected, respectively. NetState does not track port
numbers for client version strings, so the ports for the HTTP
and SSH clients are filled with a placeholder “0”.

Figure 4:These query results show the IP addresses detected
to be running a given network service and version number
(listed by services). Also included is how long ago that ser-
vice was last detected. NetState does not currently remove host
names from version strings; thus, identical versions of Send-
mail appear to be different versions to NetState.

database updates performed by the server component.
The result of the caching is that the most-recently-seen
time value in the SQL database may not be completely
up-to-date at any given time.

The NetState Sniffer maintains information on all ac-
tive connections, as well as the version cache informa-
tion, in memory. Its memory fingerprint can be quite
large, approaching 512 MB on a busy network (e.g.
1000+ hosts). It loads some configuration files (e.g. the
p0f fingerprints) from disk but does not maintain any
state on disk.

3.5 NetState Server

The NetState Sniffers capture data off of the network
including the application version string, IP address and
port number. This three-tuple of information is then sent
to the NetState Server. The Server collects this informa-
tion and writes it to a database along with the current date
and time. If the three-tuple creates a new application-
version entry, the timestamp is also stored both in a “first-
seen” field and a “most-recently-seen” field. If the three-
tuple already exists in the database, the Server updates
the “most-recently-seen” field with the current times-
tamp. The database thus stores five-tuple entries contain-
ing the application version string, IP address, port num-
ber, first-seen timestamp and last-seen timestamp.

The NetState Server is implemented as a daemon lis-
tening on a socket on a specific TCP port (the default is
2003) for messages from a Sniffer. If it detects a new
connection on the port, it spawns a copy of itself to han-
dle that connection. The Server is implemented as a sim-
ple loop that translates messages received from the Snif-
fer into appropriate SQL database commands to update
the database. It does not have any significant memory or
disk structures to maintain (other than the SQL database
itself).

The database may be located on the same system as the
NetState Server, or it may be located on a separate back-
end database server. NetState currently supports both the
MySQL and PostgreSQL open-source databases. Each
of the NetState components was designed to be run on
Linux and BSD-derived operating systems. Tested oper-
ating systems includeRedHat Linux 9.0, Fedora Core 2
andFreeBSD 4.8.

3.6 Reporting Interfaces

A Web interface can be used to query the NetState Server
for information regarding the service applications on a
network. The client includes functionality for several
“canned” queries that answer questions including:

• What versions of software (for supported protocols)
are currently running on IP x?

• What ports are open on IP x?

• What are all the versions of protocol x (e.g. SSHD)
running on network y?

• What IPs on network x are running protocol/version
y less than version z (e.g.OpenSSH versions< pro-
tocol 2)?

In addition to the Web interface, scripts can be written
in any language with SQL library support (e.g.Perl), to
generate reports about the hosts on the network in any
desired format.

Some examples of typical SQL queries are shown in
Tables 1 and 2. These are the types of queries that can
be integrated into a graphical GUI or a Perl script, as
desired. The query in Table 1 lists the OS strings from
all the machines in the database. The record name is
os detect, and the string for theos version field
comes from the p0f fingerprint file.

Another example of a useful query is shown in Table 2,
which shows the software version for all the machines
on the network that are running an HTTP server. Note
that in this example, there are several duplicate entries
for a particular IP address. This can happen when a web-
proxy is being used. In this query,version is the name
of the database record. Theversion field is the string
that was detected by NetState. Thedescription
field is a mnemonic human-readable field that is deter-
mined by NetState. Note that “HTTP-S” refers to “HTTP
Server”; we use HTTP-C to refer to the version for the
client side. It doesnot mean “secure HTTP” (theHTTPS
protocol).

Another interesting query is

select ip addr dot, port, description,

version from version where description =

’HTTP-S’ where port != 80;

This query will list all the HTTP servers on the network
that are not running on the standard port 80.

4 Performance

The first version of NetState did not do any internal
caching of version information in the Sniffer component.
The information for each version string was handed di-
rectly to the NetState Server, where duplicate version
strings were handled by updating the “most recent time
seen” field in the database record. Performance testing
indicated that on a busy network the SQL queries would
bottleneck the system. A version cache was added to
the Sniffer component to mitigate this bottleneck. The
cache works by watching for a version string associated
with an IP address that is identical to one that was seen

mysql> select ip_addr_dot, recent_date, os_version from os_detect;
+-----------------+---------------------+---+
| ip_addr_dot | recent_date | os_version |
+-----------------+---------------------+--+|
192.168.10.182	2003-11-26 15:18:44	Linux 2.4.2 - 2.4.20
192.168.10.202	2003-11-20 17:20:33	Linux 2.4.2 - 2.4.20
192.168.10.97	2003-11-25 14:12:36	Windows XP Pro, Windows 2000 Pro
192.168.10.20	2003-11-25 09:33:49	Windows 98 or Windows 2000 SP4
192.168.10.31	2003-11-21 15:33:42	FreeBSD 5.0-RELEASE or Macintosh PPC Mac OS X (10.2. ...
192.168.10.31	2003-11-21 15:33:45	Macintosh PPC Mac OS X (10.2.1 and v?)
192.168.10.5	2003-11-21 16:55:51	Windows 2000
192.168.10.4	2003-11-25 16:55:16	Windows 98 or Windows 2000 SP4
192.168.10.218	2003-11-26 12:00:40	Windows 2000
(...)

192.168.10.51	2003-11-26 11:24:59	Windows 98 or Windows 2000 SP4
192.168.10.84	2003-11-25 16:04:28	Windows XP Pro, Windows 2000 Pro
192.168.10.133	2003-11-26 13:25:31	Windows 2000
+-----------------+---------------------+---+
17 rows in set (0.00 sec)

Table 1:This query and the corresponding results list all detected IP addresses and their corresponding operating systems. Here
we also requested the date and time at which the operating system was last seen.

mysql> select ip_addr_dot,port, description, version from version where description = ’HTTP-S’;
+---------------+------+-------------+---+
| ip_addr_dot | port | description | version |
+---------------+------+-------------+---+
192.168.10.11	80	HTTP-S	Server: GWS/2.1
192.168.10.11	80	HTTP-S	Server: SmallWebServer/2.0
192.168.10.10	80	HTTP-S	Server: Apache/1.3.28 (Unix)
192.168.10.10	80	HTTP-S	Server: Apache/1.3.26 (Unix)
192.168.10.10	80	HTTP-S	Server: GWS/2.1
192.168.10.10	80	HTTP-S	Server: SmallWebServer/2.0
192.168.10.10	80	HTTP-S	Server: Microsoft-IIS/5.0
192.168.10.10	80	HTTP-S	Server: Barista/3.2.7.0005
192.168.10.10	80	HTTP-S	Server: ValueAdExpress Server 2.0 UNIX (FreeBSD)
192.168.10.11	80	HTTP-S	Server: Squid/2.3.STABLE2
192.168.10.8	80	HTTP-S	Server: Squid/2.3.STABLE2
192.168.10.10	80	HTTP-S	Server: Stronghold/2.4.2 Apache/1.3.6 C2NetEU/2412 (Un ...
192.168.10.8	80	HTTP-S	Server: GWS/2.1
192.168.10.8	80	HTTP-S	Server: Stronghold/2.4.2 Apache/1.3.6 C2NetEU/2412 (Un ...
(...)

| 192.168.10.8 | 80 | HTTP-S | Server: Microsoft-IIS/4.0 |
| 192.168.10.8 | 80 | HTTP-S | Server: Apache/1.3.27 (Unix) mod_throttle/3.1.2 mod_pe ...|
+---------------+------+-------------+---+
58 rows in set (0.00 sec)

Table 2: This query and the corresponding results list all Web servers seen on the local network. Web servers are recorded as
“HTTP-S” to differentiate them from Web clients (“HTTP-C”).

“recently” (where “recently” is configurable but defaults
to five minutes). In that case the Sniffer does not im-
mediately update the database. The new most-recent
time information is cached, and the database is updated
later, either by a housekeeping routine or when the Snif-
fer exits. This caching means that the information in
the database will not be as up-to-date as it would be
without caching, but the performance increase is sub-
stantial. In concrete terms, without this caching, Net-
State was not able to keep up with the network traffic
on our target network (averaging ˜7 Mb/s combined in-
bound and outbound traffic). With the caching, dropped
packets were essentially reduced to zero as reported by
pcap stats().

5 Experiences

After running NetState on our internal network for sev-
eral months, we have already found some useful results.
Mainly, NetState is useful for finding out what is really
happening on the network and for spotting unusual ac-
tivity that might not be detected by active scanning. For
example, if multiple machines are located behind a NAT
(network address translation) device, they will appear to
have a single IP address. By monitoring the OS and ap-
plication versions coming from that IP address, it is easy
to detect a NAT device (or a single machine that boots
multiple operating systems at different times). This sort
of information is useful both because it might be in vio-
lation of network security policies and because we might
want to identify all machines running a certain OS for
patching and vulnerability assessment/remediation. Net-
State can also detect information about a machine that
is used infrequently – such a machine might not even be
turned on when an active scanning program is run, but
if it is ever booted and communicates on the network,
NetState can detect it.

Because NetState does not rely on “known ports” to
identify application versions, it can detect services run-
ning on unusual ports. These might be unsanctioned
HTTP servers, or they could be indications of a compro-
mised machine “phoning home” to the attacker. Active
scanning, obviously, can only detect the ports that hap-
pen to be open at the time the scan is performed. Attack-
ers often only open ports for very short windows of time.
Again, NetState can detect and log this activity whenever
it happens to occur.

6 Challenges

As in any project, we were presented with some chal-
lenges in the course of our implementation. One chal-
lenge was designing a system that could handle tracking

application versions over a very large IP address space
(i.e. CIDR /16 and larger spaces). This required a large
database with capability to hold information on, poten-
tially, thousands of addresses and ports and, sometimes,
multiple services per port corresponding to a single IP
address because of multiple installed operating systems.

Another difficulty is application version obfuscation.
Some network services issue version strings with varying
degrees of specificity. Some services do not issue version
strings at all, leaving version identification to a process
of identifying protocol differences between versions. We
do not currently use this technique for application ver-
sion identification in NetState.

NetState cannot account for the situation created when
the Sniffers are located on the outside of a NAT device.
The NAT device causes many service versions to appear
as if they are associated with one IP address or computer,
creating many collisions in the NetState database. Many
service versions for one given port can be recorded in a
very short period of time causing an administrator great
confusion. The solution to this situation, of course, is
to design the monitoring architecture in such a way that
a NetState Sniffer is behind every NAT device. Know-
ing where NAT devices are located on one’s network is,
of course, the most important help for an administrator.
This same issue exists when detecting Web browser ver-
sions for machines behind a Web proxy server. As men-
tioned in Section 5 above, this aberrant behavior can be
helpful in detecting NAT devices and Web proxy servers
on networks, especially when these devices need to be
regulated by an administrator in some way.

7 Legal Issues

Some network users may object to software such as Net-
State because it is a form of monitoring software and has
the potential to invade one’s privacy. We can appreciate
that opinion and can assure users that NetState evaluates
and stores data exactly as described previously and does
not store data from further down in the data stream. Due
diligence requires us to look at the legality of one’s cor-
poration, university, or ISP (Internet Service Provider)
conducting such “monitoring” as well.

Corporations (such as our laboratory) are legally al-
lowed to monitor their own networks for “business pur-
poses” which could include monitoring for misuse and
potential vulnerabilities [10, 11, 12]. In addition, we use
banners in local login windows and remote logins to in-
dicate that all network traffic is subject to monitoring.
Logging into the system indicates consent to monitoring,
though consent is not essential for a company to moni-
tor employee communications. In almost all cases, em-
ployees should have no expectation of privacy relating
to their network traffic including email (whether a work

account or a personal account), Web-surfing habits, etc.
[13]. When using company-owned equipment to access
a data network, all network traffic is fair game for corpo-
rate snooping.

According to US code, ISPs are allowed to monitor
their networks for misuse and potential vulnerabilities as
well [14]. An ISP is allowed to “intercept, disclose, or
use” the network traffic for the purposes of rendering ser-
vice and for protecting its property. It can easily be seen
that a system used for tracking service versions and thus
potential vulnerabilities on an ISP’s network, though not
on systems owned by the ISP, can be used to ensure a
properly functioning network for customers and protect-
ing the ISP’s own assets (servers, bandwidth, etc.).

It appears that universities can also sniff network traf-
fic under the same US code section as above. Since most
universities provide a “wire or electronic communica-
tions service,” they can also protect their property using
a tool such as NetState.

Employees, customers, students, researchers, etc.
may not like that their Internet communications can be
watched, but US law appears to allow such actions.
Again, our tool does nothing more than watch for and
record network service version information. Neverthe-
less, we remind users to deploy encrypted network appli-
cations or to tunnel their applications over an encrypted
link for true data confidentiality.

8 Future Work

We would like to extend NetState to detect version
strings for more network services. Eventually we would
hope to have a list containing regular expression-based
signatures for version strings so that we can easily add
more detection capability. This could be similar to the
signature file used by the open source intrusion detection
system, Snort.

As mentioned earlier, the Nmap scanning tool has the
capability to actively probe open ports for service and
version information. It would be easy to quickly popu-
late the NetState database upon initial installation using
this feature of Nmap. NetState could piggyback on an or-
ganization’s routine scanning activities to aid in database
population as well.

Because NetState learns about service versions pas-
sively, it cannot learn information about specific software
versions being run inside of SSL connections. Nmap in-
vokes OpenSSL when it discovers an SSL-enabled ser-
vice and then initiates further probes to obtain version
information. We may add a module to NetState that
invokes Nmap when SSL-enabled ports are discovered,
storing those results in the NetState database.

NetState is a query-based tool. In other words, a net-
work/security analyst will not get information out of Net-

State if he/she does not specifically ask for it. We would
like to build a small set of signatures that constantly
look for service version anomalies and automatically no-
tify appropriate personnel. For example, we would like
to know in a short amount of time if an OpenSSH ser-
vice version changed to an earlier version than was last
known.

Our current design using passive sniffing could aid in
performing network-based anomaly detection in the fu-
ture. Since the anomaly detection data would come from
current traffic that was scanned passively, it can be di-
rectly compared to the data from NetState – i.e. the data
will contain the same type of information. We think this
will make the anomaly detection task more tractable.

We have begun to study creating network profiles for
each device on our network using NetState. Because
we have Sniffers placed in many strategic locations, it
is easy to record and store information about the typical
network traffic patterns seen from each network device.
We have experimented with storing information about
each session that a device establishes that terminates with
hosts outside our networks. After enough time building a
database of session data, we hope to extend the NetState
Server so that it detects anomalies in network traffic be-
tween hosts.

9 Acknowledgements

We would like to thank Tim Toole, Tristan Weir, Archer
Batcheller, Kami Vaniea, and Eric Thomas for their con-
tributions and insight into this project. Special thanks
goes to Randy McClelland-Bane for his hard work gath-
ering screenshots and data for our consumption.

References

[1] Fyodor. (2005) Nmap. Insecure.org. [Online]. Available:
http://www.insecure.org/nmap/

[2] eEye Digital Security. (2005) Iris network traffic analyzer.
[Online]. Available: http://www.eeye.com/html/products/
iris/index.html

[3] Javvin Company. (2005) Network packet analyzer.
[Online]. Available: http://www.javvin.com/packet.html

[4] Novell Inc. (2005) Zenworks suite. [Online]. Available:
http://www.novell.com/products/zenworks/

[5] Renaud Deraison. (2005) Nessus open source vulnerabil-
ity scanner project. Tenable Network Security. [Online].
Available: http://www.nessus.org/

[6] Lawrence Berkeley National Laboratory Network Re-
search Group. (2005) libpcap. [Online]. Available:
http://ftp.ee.lbl.gov/nrg.html

[7] Michal Zalewski. (2005) p0f v2. [Online]. Available:
http://lcamtuf.coredump.cx/p0f.shtml

[8] Darpa intrusion detection evaluation data. MIT Lincoln
Laboratory. [Online]. Available: http://www.ll.mit.edu/
IST/ideval/data/1999/training/week3/

[9] Aaron Turner and Matt Bing. (2005) Tcpreplay. [Online].
Available: http://tcpreplay.sourceforge.net/

[10] (2004) Workplace privacy. EPIC. [Online]. Available:
http://www.epic.org/privacy/workplace/

[11] (2002) Fact sheet 7: Workplace privacy. Privacy
Rights Clearinghouse. [Online]. Available: http://www.
privacyrights.org/fs/fs7-work.htm

[12] Karen L. Casser, “Employers, employees, e-mail
and the internet,” in The Internet and Business:
A Lawyer’s Guide to the Emerging Legal Issues.
Computer Law Association, 1996. [Online]. Available:
http://www.cla.org/RuhBook/chp6.htm

[13] (2003) Fact sheet 18: Privacy in cyberspace. Privacy
Rights Clearinghouse. [Online]. Available: http://www.
privacyrights.org/fs/fs18-cyb.htm

[14] United States Federal Government, “Interception and
disclosure of wire, oral, or electronic communi-
cations prohibited,” in US Code, Title 18, Part
I, Chapter 119, §2511, 2004. [Online]. Avail-
able: http://www.law.cornell.edu/uscode/html/uscode18/
uscsec18 00002511----000-.html

